MATHEMATICS - I

Time Allowed: 3 Hours

Full Marks: 60

Answer the following questions from Group A, B & C as directed.

GROUP A

Choose the correct alternatives (any ten):

- i. The value of $\log_b a \times \log_a b \times \log_a c$ is (a) $\log_a a$ (b) $\log_b a$ (a) $\log_a a$
- ii. $z^{3\log_2 a}$ is equal to- (a) a^2 (b) a^3 (c) a (d) z^a
- iii. The equation $\log_a x + \log_a (1+x) = 0$ can be written as- (a) $x^2 + x + 1 = 0$ (b) $x^2 x + 1 = 0$ (c) $x^2 + x 1 = 0$ (d) None of these
- iv. If one root of the equation $x^2 + 6x + m = 0$ is 1 then the value of m is(a) 7 (b) -7 (c) 6 (d) None
- v. In the expansion of $(1+px)^{10}$ the coefficient of x^2 is- (a) $^{10}c_2$ (b) $^{10}c_2p$ (c) $^{10}c_2p^2$ (d) None
- vi. Square root of (-7) is- (a) 49 (b) 7i (c) √7i (d) None
- vii. Which one of the following is impossible? (a) $0 < \cos \theta < 1$ (b) $\cos ec^2 \theta < 1$ (c) $-1 \le \sin \theta \le 1$ (d) $\sin \theta = 0$
- viii. If $\tan A = \frac{7}{5}$ and $\tan B = \frac{5}{7}$ then the value of $\cot(A B)$ is (a) 0 (b) $\frac{5}{12}$ (c) $\frac{5}{12}$ (d) None
- ix. If $\frac{\pi}{2} < \theta < \frac{3\pi}{4}$ and $\tan 2\theta = \frac{3}{4}$ then the value of $\tan \theta$ is (a)3 (c)2 (d) None
- x. Which of the following does not exists?
 (a) $\sin^{-1}(0.6)$ (b) $\cos ec^{-1}(6.6)$ (c) $\cot^{-1}(10)$ (d) $\sec^{-1}(0.3)$
- xi. Which of the following is true?

 (a) $\sin x$ is a periodic function of period π
 - (b) cos x is an odd function
 - (c) x^3 is an even function
 - (d) $\tan x$ is a periodic function of period π
- xii. $x \rightarrow 2$ does imply -(x)x < 2 (b) x > 2 (c) x = 2 (d) x is nearer to 2
- xiii. $\frac{d}{dx}(\log_{10}\sin x)$ is equal to-(a) $\cot x$ (b) $\frac{\cot x}{\log_{10}e}$ (c) $\frac{\cot x}{\log_{10}10}$ (d) None

- xiv. Which of the following is not a vector? (a) Velocity (b) Displacement (c) Wass (d) none of these
- xv. $\vec{a} \times \vec{b}$ is a vector- (a) parallel to \vec{a} (b) perpendicular to both $\vec{a} \& \vec{b}$ (c) parallel to \vec{b} (d) perpendicular to \vec{a}

Fill in the blanks (any ten):

1x10

- i. If $\log_{10} a + \log_{10} b = \log_{10} (a+b)$ then b is equal to _____.
- ii. If one root of the equation $x^2 8x + m = 0$ is 2 then the other root is_____.
- iii. The number of terms in the expansion of $(a+b)^n$, n is a positive integer, is
- iv. Conjugate of the complex number 5 is_____.
- v. If z is purely imaginary, then $z + \overline{z}$ is _____.
- vi. The value of cos 1° cos 2° cos 3° cos 123° cos 124° cos 125° is_____.
- vii. Minimum value of $(\sin \theta + \cos \theta)$ is _____.
- viii. If $\tan \theta = 2$, then the value of $\cos 2\theta$ is_____
- ix. $\cos(\sin^{-1}\frac{1}{2}+\sec^{-1}2)$ is _____.
- x. Value of $\lim_{x\to 0} \frac{x}{3x^2-2x}$ is _____.
- xi. If $y = \tan^{-1} \sqrt{\frac{1 \cos 2x}{1 + \cos 2x}}$ then $\frac{dy}{dx}$ is _____.
- xii. If $y = (\tan^{-1} x)^2 & \frac{dy}{dx} = 2 \tan^{-1} x \cdot f(x)$ then f(x) is _____.
- xiii. If $\vec{a} = -\hat{i} + 2\hat{j}$, $\vec{b} = 3\hat{i} 2\hat{j}$ and $\vec{c} = 5\hat{j}$ then $|\vec{a} + \vec{b} 2\vec{c}|$ is _____.
- xiv. If the position vector of two points A and B are respectively $\hat{i} + 2\hat{j} 3\hat{k}$ and $4\hat{i} + 5\hat{j} + 6\hat{k}$ then the unit vector in the direction of \overline{AB} is _____.
- xv. The angle between the vectors $2\hat{i} + 3\hat{j} + \hat{k}$ and $2\hat{i} \hat{j} \hat{k}$ is _____.

3. Answer the following questions (any ten):

- i. If $\log_{10}^a = r$, then find the value of $a^{\frac{3}{r}}$.
- ii. If (4-3i) be a root of the equation $px^2 + qx + 1$, where p, q are real, find the values of p and $px^2 + qx + 1$

- iii. If the roots of the equation $x^2 px + q = 0$ be 1:2, then find the relation between p and q.
- iv. Find the middle term of the expansion of $(2x^2 \frac{1}{x})^8$.
- v. What is the amplitude of the complex number (-10).
- vi. If $\cot 3x \cot 5x = 1$, then find the value of $\cot 4x$.
- vii. Find the value of tan 27° + tan 18° + tan 27° tan 18°.
- viii. If cos(x-y)+1=0, then find the value of (cos x + cos y).
- ix. What is the value of $\sec^{-1}(-\sqrt{2})$.
- x. Evaluate $\lim_{x\to 1} \frac{\sqrt{x}-1}{x-1}$.
- xi. $f(x) = \frac{2x^2 8}{x 2}$ is undefined at x = 2, then find the value of f(2).
- xii. If $y = \cot^{-1} x + \cot^{-1} \frac{1}{x}$, find the value of $\frac{dy}{dx}$.
- xiii. Force $\vec{F} = 2i j k$ is applied to an object making a displacement $\vec{d} = 3i + 2j 5k$, find the work done.
- xiv. A force $\vec{F} = 2i + j k$ acts at a point whose position vector is 2i j, find the moment of \vec{F} about the origin.
- xv. If $\vec{a} = 2i j + \lambda k$ and $\vec{b} = 4i 2j + 3k$ are collinear, then find the value of λ .

GROUP B

Answer the following questions (any six):

- i. Evaluate: $\log_{y}^{z} \times \log_{y}^{y} \times \log_{z}^{z}$.
- ii. The roots α and β of the equation $x^2 px + q = 0$, are such that $2\beta + \alpha = 0$. Then find the relation between p and q.
- iii. If x, y are real and x+3i and -2+iy are conjugate to each other, find the values of x and y.
- iv. If |z-5|=5 where z=x+3i, x and y being real, then find the locus of the point (x,y).

- v. Find the value of tan 1° tan 2° tan 3°...... tan 89°.
- vi. Prove that $\tan A + \frac{1}{\tan A} = \cos ec^2 A$.
- vii. If $180^{\circ} < \theta < 270^{\circ}$ and $\sin \theta = -\frac{3}{5}$ then find the value of $\cos \theta$.
- viii. Evaluate $\lim_{x\to 0} \frac{\sin^{-1} x}{x}$.
- ix. If $f(x) = \frac{1}{1+x^{b-c}+x^{a-c}} + \frac{1}{1+x^{c-b}+x^{a-b}} + \frac{1}{1+x^{c-a}+x^{b-a}}$ and f'(0).
- x. If the diagonals of a parallelogram are represented by the vectors 3i + j 2k and i + 3j 4k, then finds its area.

GROUP C

Answer the following question (any one):

- i) If one root of the equation $x^2 + rx s = 0$ is square of other, prove that $r^3 + s^2 + 3rs s = 0$.
- ii) Form a quadratic equation with real co-efficients, whose one root is (2-3i).
- 6. Answer the following question (any one):

- 1x6
- i) If $x + iy = \sqrt{\frac{a + ib}{c + id}}$, then prove that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$, where x, y, a, b, c, d all are real.
- ii) If $z_1 = 3 + 5i$, $z_2 = 1 i$, verify the relation $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$.
- 7. Answer the following question (any one):

- 1x6
- i) If the 4th term in the expansion of $(px + \frac{1}{x})^n$ is independent of x, find the value of n. Also calculate p if the 4th term be $\frac{5}{2}$.
- ii) Prove that $\frac{1}{\log_a^{bc} + 1} + \frac{1}{\log_b^{ca} + 1} + \frac{1}{\log_c^{ab} + 1} = 1$.