

JULY 2023

APPLIED PHYSICS-II

Time Allowed: 2.5 Hours

Full Marks: 60

Answer to Question No. 1 is compulsory and Answer any Five (05) Questions from the rest.

1. Answer the following questions (any five):

3x5

- i. In which position the velocity of a particle executing SHM is maximum? Explain.
- ii. On what factors does the focal length of a lens depend?
- iii. Is the electric potential necessarily be zero at a point where the electric field strength is zero? Explain.
- iv. What are the differences between Peltier effect and Joule effect?
- v. A wire cuts across a flux of 0.002 Weber in 0.12 seconds. What is the emf induced in the wire?
- vi. Write down the basic principle of operation of a solar photo voltaic cell.
- vii. What are the unique properties of LASER?
- viii. Mention three uses of nanotechnology.

2. (a) The equation of a particle vibrating in SHM is $y = 5 \sin 2\pi/5(10t+x)$, where y and x are in m and t is in s. Find out the frequency and amplitude of vibration.
 (b) Write down a few differences between Oscillatory and Periodic motion.
 (c) What is ultrasonic wave? Write down the properties and applications of it.

2+3+(1+3)

3. (a) A lens is composed of different layers made of two different materials. A point object is placed on the axis. How many images of the object will be formed and why?
 (b) Calculate the speed of light in a medium whose critical angle is 45° .
 (c) Draw a ray diagram to show image formation when the convex lens produces a real, inverted and magnified image of the object.
 (d) Write two features to distinguish between the interference patterns in Young's double slit experiment with the diffraction pattern obtained due to a single slit.

3+2+2+2

4. (a) Compare conductor, semiconductor and insulator in terms of energy band diagram.
 (b) A student wants to use two p-n junction diodes to convert alternating current into direct current. Draw the labelled circuit diagram he/she would use and explain it.
 (c) Draw the typical input and output characteristics of an n-p-n transistor in CE configuration. Show how these characteristics can be used to determine (i) the input resistance (r_i), and (ii) current amplification factor (β).

3+(2+1)+3

5. (a) State Lenz's law. Does it obey the principle of conservation of energy?
 (b) Deduce an expression for the magnitude of the magnetic field at the centre of a circular coil of N turns.
 (c) A straight wire carrying current of 12A is bent into a semi-circular arc of radius 0.02m. Find the magnitude of the magnetic field at the centre of the arc.

(2+2)+2+3

6. (a) State Biot-Savart law and express this law in the vector form.
(b) An electron travelling with velocity 30 cms^{-1} enters a region of uniform magnetic field 0.2T , acting perpendicular to its paths. Calculate the magnitude of force on the electron, (charge of electron $= 1.6 \times 10^{-19}\text{C}$).
(b) State and explain Lenz's law.
(d) A galvanometer of resistance 100Ω gives full scale deflection when a current of $500\mu\text{A}$ passes through it. How can this be converted to a voltmeter reading up to 5V ? Draw necessary circuit diagram. $(2+1)+2+2+2$

7. (a) What are the differences between intrinsic and extrinsic semiconductors ?
(b) Calculate the tube voltage required to be applied to an X-ray tube to get minimum wavelength 1\AA . (Planck's constant $h = 6.626 \times 10^{-34} \text{ J.s}$)
(c) Define population inversion. Discuss some method to achieve population inversion. $3+2+(1+3)$

8. (a) Draw the curve showing the variation of intensity with wavelength of X-rays and mark cut off wavelength, continuous & characteristic X-rays. Write down two important applications of X-rays.
(b) Draw the energy level diagram of He-Ne Laser.
(c) State some advantages of optical fibre over conducting wire. $(3+2)+2+2$

