

MATHEMATICS-II

Time Allowed: 1.5 Hours

Full Marks: 60

Answer to question number 1 is compulsory and Answer any two questions from the rest.1. Answer any twenty questions from the following with proper justification of each: 20x2=40i) Solve: $\frac{ydy+x dx}{x^2+y^2} = 0$.ii) In the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix}$ minor of “-1” is ____.iii) If $u(x, y) = \sqrt{\frac{x^2}{x+y}}$. Then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = ?$ iv) The area of the region bounded by $y = 2x - x^2$ and $y = x$ is ____.v) Is the matrix $\begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 1 \end{bmatrix}$ non-singular? (Yes or No)vi) Is the differential equation homogeneous: $\frac{dy}{dx} = \frac{3xy^2+2x^2y}{5y^3+x^2}$? Yes/No

vii) Check the co-linearity of the points: (2, 5), (0, 0) and (-1, -2.5).

viii) If two coins are tossed, the probability of getting at most one head is ____.

ix) If $P(A) = 0.4, P(B) = 0.35$, Find $P(\bar{A}) + P(\bar{B}) - 1 = ?$ x) $\int_{-2}^{+2} x^3 dx = ?$ xi) Find particular Integral (P.I.) of the differential equation $\frac{d^2y}{dx^2} - y = 1$.

xii) Find the probability of obtaining at least one ‘6’ in a game of throwing of two dice.

xiii) Is the matrix $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ orthogonal? (Yes/No)

xiv) The mode of the data: 10, 12, 8, 10, 12, 11, 10, 12, 7, 11, 12 is ____.

xv) Find the angle between the lines $x + 2y = 5$ and $y = 2x$.

xvi) Write the degree of the differential equation $\left(1 - 9 \frac{d^2y}{dx^2}\right)^{5/7} + 7xy \frac{dy}{dx} - y^2 = 0$.

xvii) Compute the median of the data: 10, 5, 9, 6, 4, 8, 7, 6, 5.

xviii) The value of the determinant $\begin{vmatrix} 0 & \omega & -\omega^2 \\ -\omega & 0 & \omega^3 \\ \omega^2 & -\omega^3 & 0 \end{vmatrix}$ is _____.

xix) $2 \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = ?$

xx) Test the differential equation $(ye^x - 5x) dx - (e^x + 5y) dy = 0$ is exact or not.

xxi) The cofactor of 6 in the determinant $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$ is _____.

xxii) Find the adjoint of the matrix $\begin{pmatrix} 5 & 0 \\ 1 & -2 \end{pmatrix}$.

xxiii) Evaluate: $\int_1^e \log_e x \, dx$.

xxiv) Find the integrating factor (I.F.) of $\frac{dy}{dx} + 2xy = 9x$.

xxv) Find the length of the semi-latus rectum of the hyperbola $\frac{x^2}{25} - \frac{y^2}{16} = 1$.

2. a) Evaluate by Chio's method $\begin{vmatrix} 1 & 2 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 1 \\ 1 & 0 & -1 & 0 \end{vmatrix}$. 5

b) Evaluate: $\int \frac{x \, dx}{(x-1)(2x+1)}$. 5

3. a) Solve: $2xy + 3x^2 = \frac{dy}{dx}(2y - x^2 + 1)$ 5

b) If p_1 and p_2 be the length of perpendicular from the origin upon the lines $-4y - 5 \sin \alpha = 0$ and $3y + 4x = 5 \cos \alpha$, prove that $p_1^2 + p_2^2 = 1$. 5

4. a) Solve the equations by crammer's rule $x + y + z = 3$; $2x + z = 5$; $x + 2y = -1$. 5

b) If $z = \tan^{-1} \left(\frac{x-y}{\sqrt{x+y}} \right)$, show that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = \frac{1}{4} \sin 2z$ 5

5. a) Evaluate: $\int e^x \cos x \, dx$. 5

b) Solve: $\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + y = x^3$. 5

6. a) Solve: $y \, dy = (y^2 - 1)(x + 1) \, dx.$ 5

b) A straight line forms a right angle triangle with the coordinate axes. If the area of triangle is 6 and the hypotenuse is 5, find the equation of the straight line. 5

7. a) Find A^{-1} ; if $A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 1 & 4 \\ 0 & -1 & 1 \end{pmatrix}$ and show that $AA^{-1} = I_3.$ 3+2

b) Solve: $\frac{dy}{dx} + xy = xy^3.$ 5

8. a) Find the volume of the solid generated by revolving; the area bounded by the curve $y = \sin x, x = 0, x = \frac{\pi}{2}$ about the x-axis. 5

b) What is the probability that the sum of outcomes is 13, when three dice are rolled? 5

9. a) A circle has radius 4 unit and its center lies on $x+y=0$ and it passes through (1, 1). Find its equation. 5

b) Find the median of the distribution given below: 5

$$\begin{array}{llllll} x : & 01-10 & 11-20 & 21-30 & 31-40 & 41-50 & 51-60 \\ f_i: & 3 & 10 & 9 & 13 & 7 & 15 \end{array}$$