

## MATHEMATICS-II

Time Allowed: 2.5 Hours

Full Marks : 60

Answer the following questions from Group A, B &amp; C as directed

Group A

1. Choose the correct alternatives (any ten) :

1×10

i) The value of  $\begin{vmatrix} 100 & 101 & 102 \\ 105 & 106 & 107 \\ 110 & 111 & 112 \end{vmatrix}$  is (a) 2 (b) 0 (c) -1 (d) none of these.

ii) Determinant value of any skew symmetric matrix of order  $2 \times 2$  is  
 (a) strictly positive (b) strictly negative (c) 0 (d) none of these.

iii) The co-factor of the element 5 in  $D = \begin{vmatrix} 1 & 3 & 4 \\ -1 & 0 & 2 \\ 3 & 5 & 8 \end{vmatrix}$  is (a) 5 (b) 6 (c) 0 (d) -6.

iv) The value of  $k$  for which the points  $(1, 2)$ ,  $(k, 4)$  and  $(3, 6)$  are collinear is  
 (a) 1 (b) 2 (c) 3 (d) none of these.

v) The value of  $k$  for which the line  $2x + 3y + 4 + k(6x - y + 11) = 0$  is parallel to the  $y$ -axis is  
 (a)  $\frac{1}{3}$  (b)  $-\frac{1}{3}$  (c) 3 (d) none of these.

vi) Coordinates of centre of the circle  $2x^2 + 2y^2 - 8x - 5 = 0$  are  
 (a)  $(0, 2)$  (b)  $(2, 0)$  (c)  $(4, 0)$  (d)  $(-4, 0)$

vii)  $\int e^{1-\log x} dx$  is equal to (a)  $ex + c$  (b)  $e \log|x| + c$  (c)  $x \log e + c$  (d) none of these.

viii)  $\int \frac{\cos x}{\sqrt{1+\cos 2x}} dx =$  (a)  $x + c$  (b)  $\frac{x}{2} + c$  (c)  $\frac{x}{\sqrt{2}} + c$  (d) none of these.

ix) The order and degree of the differential equation  $\left( \frac{d^2y}{dx^2} \right)^5 - x^3 \left( \frac{dy}{dx} \right)^3 = 0$  are  
 (a) 1 and 2 (b) 2 and 5 (c) 2 and 3 (d) none of these.

x) The Integrating Factor (IF) of the differential equation  $\frac{dy}{dx} + \frac{1}{x}y = \sin x$  is  
 (a)  $x$  (b)  $\frac{1}{x}$  (c)  $\log_e x$  (d) none of these.

xi) General solution of the differential equation  $\frac{dy}{dx} = 1$  is  
 (a)  $y = c$  (b)  $x = 0$  (c)  $y = x$  (d) none of these.

xii) The differential equation whose general solution is  $y = A \cos x + B \sin x$  is  
 (a)  $\frac{d^2y}{dx^2} = y$  (b)  $\frac{d^2y}{dx^2} = -y$  (c)  $\frac{d^2y}{dx^2} = 0$  (d) none of these.

xiii) If  $u = 5x^2 + 7xy + 3y^2$ , then  $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$  equals to  
 (a)  $u$  (b)  $2u$  (c)  $4u$  (d) none of these.

xiv) The median of the data 6, 4, -1, 0, 4, 8, 9 is

(a) 0 (b) 4 (c) 6 (d) none of these.

xv) Two coins are tossed. The probability of getting at least one head is

(a)  $\frac{3}{4}$  (b)  $\frac{1}{2}$  (c)  $\frac{1}{4}$  (d) none of these.

2. Fill in the blanks(any ten):

1×10

i) For a matrix  $A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 0 & 5 \end{pmatrix}$ ,  $A^T = \underline{\hspace{2cm}}$ .

ii) Matrix  $(1 \ 2) \begin{pmatrix} -2 & 5 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$  is equal to  $\underline{\hspace{2cm}}$ .

iii) The area bounded by the curves  $4x + 3y = 12$ ,  $y = 0$  and  $x = 0$  is  $\underline{\hspace{2cm}}$ .

iv) If the length of the diameter of the circle  $x^2 + y^2 + 4x - 6y - k = 0$  is 4 then value of k is  $\underline{\hspace{2cm}}$ .

v)  $x^2 - y^2 = 2022$  represents a  $\underline{\hspace{2cm}}$ .

vi) If  $\frac{d}{dx}[\varphi(x)] = f(x)$ , then  $\int f(x) dx$  is  $\underline{\hspace{2cm}}$ .

vii)  $\int_0^1 |x| dx = \underline{\hspace{2cm}}$ .

viii)  $\int_0^1 \frac{1-x}{1+x} dx = \underline{\hspace{2cm}}$ .

ix) Particular Integral(PI) of the differential equation  $\frac{d^2y}{dx^2} + 4y = 5e^{2x}$  is  $\underline{\hspace{2cm}}$ .

x) If the differential equation  $(2x^2 + 4y)dx + k(4x + y - 1)dy = 0$  is exact then value of k is  $\underline{\hspace{2cm}}$ .

xi) The Complementary Function(CF) of  $\frac{d^2y}{dx^2} - 16y = xe^{3x}$  is  $\underline{\hspace{2cm}}$ .

xii)  $y = c_1 + c_2 e^x$  is the solution of the differential equation  $\underline{\hspace{2cm}}$ .

xiii) If  $u = e^{xy}$ , then the value of  $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}$  is  $\underline{\hspace{2cm}}$ .

xiv) If the mean of  $x - 2, 10, x + 3, 7$  is 9, then  $x = \underline{\hspace{2cm}}$ .

xv) The probability of getting an even number from the numbers up to 50(Including 50) is  $\underline{\hspace{2cm}}$ .

3. Answer the following questions(any ten):

1×10

i) Find x and y such that  $\begin{pmatrix} 3 & x+1 \\ y+2 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix}$ .

ii) What is symmetric matrix?

iii) Find the value of x for which  $A = \begin{pmatrix} 2 & x \\ 3 & 6 \end{pmatrix}$  is singular matrix.

iv) Find slope of the line be  $2x - 3y = 3$ .

v) Find length of major axis of the ellipse  $9x^2 + 16y^2 = 144$ .

vi) Integrate :  $\int \cot^2 x dx$ .

vii) Evaluate:  $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^9 x \cos^5 x \, dx$ .

viii) Evaluate:  $\int_1^2 \log x \, dx$ .

ix) If the roots of Auxiliary Equation(AE) of a linear differential equation of 2<sup>nd</sup> order with constant coefficients be  $2 \pm 3i$ , find the Complimentary Function(CF).

x) Find  $\frac{1}{D^2 + 5} (\sin 2x)$ .

xi) If  $u = 7xy^2$ , find  $\frac{\partial^2 u}{\partial x \partial y}$ .

xii) State Euler's theorem on homogeneous function.

xiii) If  $y = 2x - 5$  and  $\bar{x} = 7$ , find the value of  $\bar{y}$ .

xiv) Find the mode of the data: 7, -1, 2, 3, 5, 0, 2, 3, 2, 3, 0, 4, 2, 5, 1

xv) Let A and B be two events and  $P(A) = 0.3$ ,  $P(B) = 0.2$  and  $P(A \cap B) = 0.4$ , find the value of  $P(A \cup B)$ .

### Group B

4. Answer the following questions(any six) :

2×6

i) If  $A = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$ , find  $A(\text{adj } A)$ .

ii) Show that  $\begin{vmatrix} 1 & \alpha & \alpha^2 \\ 1 & \beta & \beta^2 \\ 1 & \gamma & \gamma^2 \end{vmatrix} = - \begin{vmatrix} \alpha^2 & \beta^2 & \gamma^2 \\ \alpha & \beta & \gamma \\ 1 & 1 & 1 \end{vmatrix}$

iii) Transfer the Cartesian form of the equation  $x^2 + y^2 = 2ax$  to its polar form.

iv) If the lines joining the points  $(a, -2)$  and  $(4, -a)$  be parallel to the line joining  $(2, 1)$  and  $(3, 4)$ , find the value of a.

v) Integrate:  $\int \frac{dx}{1 - \cos x}$ .

vi) Evaluate:  $\int_0^1 \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx$ .

vii) Solve:  $xdy - ydx = (x^2 + y^2) dx$

viii) Verify Euler's Theorem for the function  $f(x, y) = 3x^2 + 4y^2$ .

ix) Find the variance of: 5, 6, 7, 8, 10.

x) An urn contains 12 white balls and 6 red balls. A ball is drawn at random. What is the probability of being it to be a white?

Group C

5. Answer the following question(any one) :

i)

a) If  $A$  be a skew symmetric matrix then prove that  $A^2$  is symmetric. 2

b) Evaluate the determinant 
$$\begin{vmatrix} 0 & -1 & -1 & 1 \\ 4 & 5 & 1 & 1 \\ 3 & 9 & 4 & 1 \\ 4 & 4 & 4 & 1 \end{vmatrix}$$
 using Chio's method. 4

ii)

a) Without expanding prove that 
$$\begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix} = 0$$
. 2

b) If  $A = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$ , prove that  $A^2 - 4A - I = 0$ , where  $I$  is the unit matrix of order 2 and hence find  $A^{-1}$ . 4

iii) A straight line passes through the point (7, 3) and has intercepts on the axes in equal magnitude but opposite in sign. Find its equation. Also find the co-ordinates of the point on the line at which the abscissa is triple the ordinate. 6

6. Answer the following question(any one) :

i) Evaluate : a)  $\int \frac{e^{4\log x} - e^{3\log x}}{e^{\log x} - 1} dx$  b)  $\int_0^{\frac{\pi}{2}} \frac{\cos x}{(1 + \sin x)(2 + \sin x)} dx$ . 2 + 4

ii) Solve :  $\frac{d^2y}{dx^2} - 4a \frac{dy}{dx} + 4a^2y = x^2 e^{2ax}$ . 6

iii) Mark the area bounded by  $y^2 = 2x$ ,  $x = 1$  and  $x = 4$  and find the enclosed area. 6

7. Answer the following question(any one) :

i) A distribution consists of three components with frequencies 200, 250, 300 having means 25, 10 and 15; standard deviation 3, 4 and 5 respectively. Prove that the mean of the combined distribution is 16 and its standard deviation is 7.2 approximately. 6

ii) A coin and a die are thrown simultaneously. Find the probabilities of occurrence of a) head and even face b) tail and multiple of three. 6

iii) If  $u = \cos^{-1} \frac{x+y}{\sqrt{x+y}}$ , prove that  $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \frac{1}{2} \cot u = 0$ . 6