Canonical Form of Boolean Expression With Examples | New Topic - Poly Notes Hub
Diploma 1st Semester Notes Diploma 2nd Semester Notes Electrical Engineering Notes Electrical and Electronics Engineering Notes Electronics and Telecommunication Engineering Notes Electronics and Instrumentation Engineering Notes Diploma 1st Semester Notes Diploma 2nd Semester Notes Electrical Engineering Notes Electrical and Electronics Engineering Notes Electronics and Telecommunication Engineering Notes Electronics and Instrumentation Engineering Notes Diploma 1st Semester Notes Diploma 2nd Semester Notes Electrical Engineering Notes Electrical and Electronics Engineering Notes Electronics and Telecommunication Engineering Notes Electronics and Instrumentation Engineering Notes Diploma 1st Semester Notes Diploma 2nd Semester Notes Electrical Engineering Notes Electrical and Electronics Engineering Notes Electronics and Telecommunication Engineering Notes Electronics and Instrumentation Engineering Notes Diploma 1st Semester Notes Diploma 2nd Semester Notes Electrical Engineering Notes Electrical and Electronics Engineering Notes Electronics and Telecommunication Engineering Notes Electronics and Instrumentation Engineering Notes Diploma 1st Semester Notes Diploma 2nd Semester Notes Electrical Engineering Notes Electrical and Electronics Engineering Notes Electronics and Telecommunication Engineering Notes Electronics and Instrumentation Engineering Notes Diploma 1st Semester Notes Diploma 2nd Semester Notes Electrical Engineering Notes Electrical and Electronics Engineering Notes Electronics and Telecommunication Engineering Notes Electronics and Instrumentation Engineering Notes Diploma 1st Semester Notes Diploma 2nd Semester Notes Electrical Engineering Notes Electrical and Electronics Engineering Notes Electronics and Telecommunication Engineering Notes Electronics and Instrumentation Engineering Notes Diploma 1st Semester Notes Diploma 2nd Semester Notes Electrical Engineering Notes Electrical and Electronics Engineering Notes Electronics and Telecommunication Engineering Notes Electronics and Instrumentation Engineering Notes Diploma 1st Semester Notes Diploma 2nd Semester Notes Electrical Engineering Notes Electrical and Electronics Engineering Notes Electronics and Telecommunication Engineering Notes Electronics and Instrumentation Engineering Notes Diploma 1st Semester Notes Diploma 2nd Semester Notes Electrical Engineering Notes Electrical and Electronics Engineering Notes Electronics and Telecommunication Engineering Notes Electronics and Instrumentation Engineering Notes Diploma 1st Semester Notes Diploma 2nd Semester Notes Electrical Engineering Notes Electrical and Electronics Engineering Notes Electronics and Telecommunication Engineering Notes Electronics and Instrumentation Engineering Notes

Our Notes Categories


Canonical Form of Boolean Expression With Examples | New Topic

In this note, we are going to learn about the Canonical Form of Boolean Expression with Examples. Welcome to Poly Notes Hub, a leading destination for notes of diploma and degree engineering students.

Author Name: Arun Paul.

Canonical Form of Boolean Expression With Examples

Here we have listed Canonical Product of Sum or POS Boolean Expression and Canonical Sum of Product or SOP Boolean Expression

Canonical Product of Sum Expression

This is defined as the logical product of all the maxterms derived from the rows of truth table, for which the value of function is 0. It is also known as the maxterm canonical form. The canonical product of sum expression can be given in a compact form by listing the decimal codes corresponding to the maxterms containing a function value of 0.

For example, if the canonical product of sum form of a 3-variable logic function YYY has four maxterms – (A+B+C),(A+B’+C),(A’+B+C) and (A’+B’+C’),
then it can be expressed as the product of decimal codes as given below:

  • Y=Π(0,2,4,7)
  • =M0​⋅M2​⋅M4​⋅M7​
  • =(A+B+C)(A+B’+C)(A’+B+C)(A’+B’+C’)

The following procedure can be used to obtain the canonical product of the sum form of a logic function:

  1. Examine each term in the given logic function. Retain it if it is a maxterm; continue to examine the next term in the same manner.
  2. Check for variables that are missing in each sum, which is not a maxterm. Add (X+X)(X + \overline{X}) to the sum term, for each variable XX that is missing.
  3. Expand the expression using the distributive property and eliminate the redundant terms.
See also  Arduino with 7 segment display | Embedded System | New Topic [2023]

The above procedures can be explained with the following examples.

Canonical POS (Product of Sums) – Examples

Question 1:
Write the canonical POS for:

Y = ΠM(1, 3, 6)

Answer:
Y = (A + B + C′)(A + B′ + C′)(A′ + B′ + C)

Question 2:
Convert into canonical POS form.

Y = A + B′C

Answer:
Y = (A + B′ + C)(A + B + C′)(A + B + C)
Y = ΠM(0, 2, 4)

Question 3:
Write the canonical POS of:

Y = ΠM(0, 5, 7)

Answer:
Y = (A + B + C)(A′ + B + C′)(A′ + B′ + C′)

Canonical Sum of Product Expression

It is defined as the logical sum of all the minterms derived from the rows of a truth table, for which the value of the function is 1. It is also called a minterm canonical form. The canonical sum of product expression can be given in a compact form by listing the decimal codes in correspondence with the minterm containing a function value of 1.

For example, if the canonical sum of product form of a 3-variable logic function YY has three minterms A’B’C’, AB’C,and ABC’, this can be expressed as the sum of the decimal codes corresponding to these minterms as stated below:

  • Y=Σm(0,5,6)
  • =m0​+m5​+m6​
  • =A’B’C’+AB’C+ABC’

where Σm(0,5,6)\Sigma m (0,5,6) represents the summation of minterms corresponding to the decimal codes 0, 5 and 6.

Using the following procedure, the canonical sum of product form of a logic function can be obtained:

  1. Examine each term in the given logic function. Retain it if it is a minterm; continue to examine the next term in the same manner.
  2. Check for variables that are missing in each product which is not a minterm.
    Multiply the product by (X+X)(X + \overline{X})(X+X), for each variable XXX that is missing.
  3. Multiply all the products and omit the redundant terms.
See also  What is Energy Audit? - Needs and Benefits | New Topic [2024]

The above procedures can be explained with the following examples.

Canonical SOP (Sum of Products) – Examples

Question 1:
Convert into canonical SOP form.

Y = A′B + C

Answer:
Y = A′B(C + C′) + C(A + A′)(B + B′)
Y = A′BC + A′BC′ + ABC + AB′C
Y = Σm(1, 3, 6, 7)

Question 2:
Write the canonical SOP of:

Y = AB + AC

Answer:
Y = AB(C + C′) + AC(B + B′)
Y = ABC + ABC′ + AB′C
Y = Σm(5, 6, 7)

Question 3:
Express in canonical SOP form.

Y = A′ + BC

Answer:
Y = A′(B + B′)(C + C′) + BC(A + A′)
Y = A′BC + A′BC′ + A′B′C + A′B′C′ + ABC
Y = Σm(0, 1, 2, 3, 7)

Question 4:
Write the canonical SOP for:

Y = Σm(0, 2, 5, 7)

Answer:
Y = A′B′C′ + A′BC′ + AB′C + ABC

Share This Post

Leave a Reply

Your email address will not be published. Required fields are marked *

Canonical Form of Boolean Expression With Examples | New Topic - Poly Notes Hub

Our Notes Categories

Canonical Form of Boolean Expression With Examples | New Topic - Poly Notes Hub

Our Notes Categories


Canonical Form of Boolean Expression With Examples | New Topic - Poly Notes Hub
1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes ✭ 1st Year 1st SEM Notes ✭ 1st Year 2nd SEM Notes ✭ EE 2nd & 3rd Year Notes ✭ EEE 2nd & 3rd Year Notes ✭ ETCE 2nd & 3rd Year Notes ✭ EIE 2nd & 3rd Year Notes

Our Notes Categories

Our Notes Categories